
Resource Calendaring for Mobile Edge Computing
in 5G Networks

Bin Xiang
Politecnico di Milano
bin.xiang@polimi.it

Jocelyne Elias
University of Bologna
jocelyne.elias@unibo.it

Fabio Martignon
University of Bergamo

fabio.martignon@unibg.it

Elisabetta Di Nitto
Politecnico di Milano

elisabetta.dinitto@polimi.it

Overview: This technical report provides additional ma-
terial for our submission to an IEEE conference. In detail,
Section I presents the reformulation of the optimization model
P0 in the main contents of our submitted paper, and Section
II shows the full set of numerical results.

I. PROBLEM REFORMULATION

Problem P0 formulated in our submitted paper cannot be
solved directly and efficiently due to following reasons:
• We perform optimal routing (the routing path Rkv is a

variable in our model, since many paths may exist from
each request source node sk to a generic node v in the
network); furthermore, we must ensure that the properties
of no-splitting, continuity and acyclicity are respected for
our routing solution.

• Variables Rkv and qkv are “intertwined”: to find the
optimal routing, the percentage of request processed at
each node v should be known, and at the same time, to
solve the optimal allocation for a request, the routing path
should be known.

• P0 contains indicator functions and constraints, e.g.
(4), (6), (11), etc., which cannot be directly and easily
processed by most solvers.

To deal with these challenging issues, we propose an
equivalent reformulation of P0, which can be solved very
efficiently with the Branch and Bound method. Moreover,
based on the reformulated problem, we propose an heuristic
algorithm which can get near-optimal solutions in a short
computing time.

A. Link Latency
As we stated before, to compute the link latency, we need

to determine the routing path Rkv , and this issue will be
specifically handled in subsection I-C. AssumingRkv has been
determined, we first introduce a binary variable γkve defined
as follows:

γkve =

{
1, if e ∈ Rkv,
0, otherwise, ∀k, ∀v,∀e,

which indicates whether e is used in the routing path Rkv
or not. Note that only if request k is processed on node v
(i.e., bkv = 1) and v 6= sk, the corresponding routing path is
defined. Then we have:{

γks
k

e = 0, ∀k, ∀e,
γkve 6 bkv, ∀k, ∀v,∀e. (12)

Based on the above definitions, we can rewrite constraint (5)
as: {

qkvλk − (1− γkve )Λk < pkve Be,
pkve 6 γkve ,

∀k, ∀v,∀e, (13)

where Λk = λk+c and c = 1 is a constant. Note that the term
(1−γkve ) permits to implement condition e ∈ Rkv in Eq. (5).

We now introduce variable hkve , defined as follows:

hkve =
1

pkve Be − qkvλk + (1− γkve )Λk
, ∀k, ∀v,∀e. (14)

This permits to transform Eq. (4) as T kvL =
∑
e∈E γ

kv
e hkve . We

then need to linearize the product of the binary variable γkve
and the continuous variable hkve , and to this aim we introduce
an auxiliary variable gkve = γkve hkve , thus also eliminate T kvL .

We first compute the value range of hkve by considering
the two cases: if γkve = 0, the range is [(Λk)−1, c−1],
where c = Λk − λk, and if γkve = 1, the range is
[B−1
e , ((βk−αk−dk)τ)−1] based on constraint (2). In detail, if

γkve = 0, then pkve = 0 and the denominator of hkve becomes
Λk − qkvλk, considering qkv ∈ [0, 1], the range of hkve is
computed as [(Λk)−1, c−1]; if γkve = 1, the denominator
of hkve becomes pkvBe − qkvλk, therefore, the upper limit
of the denominator is Be. Given that hkve represents the
single link latency which must be less than the allowed
maximum latency (βk − αk − dk)τ , therefore, the range of
hkve is [B−1

e , ((βk −αk − dk)τ)−1]. Then, the linearization is
performed by the following constraints.{

γkve B−1
e 6 gkve 6 γkve ((βk − αk − dk)τ)−1,

(1− γkve )(Λk)−1 6 hkve − gkve 6 (1− γkve )c−1.
(15)

At the same time, the link latency is rewritten as:

T kvL =
∑

e∈E
gkve .

Since pkvte = δkvtpkve is the product of binary and continu-
ous variables, we linearize it as:{

0 6 pkvte 6 δkvt,
0 6 pkve − pkvte 6 1− δkvt, ∀k,∀v,∀t,∀e. (16)

Please remind that δkvt is a binary variable which is equal
to 1 if ξk? 6 t < ξk? + dk +

⌈
Tkv
L

τ

⌉
, and 0 otherwise. As we



can see both upper and lower bounds of t are variables. We
reformulate δkvt by the following constraints:

ξk? − t 6 (βk − dk)(1− δkvt),
t− (ξk? + dk + πkvL ) < (Tm − dk + 1)(1− δkvt),
0 6

∑
t′∈T δ

kvt′ − (dk + πkvL ) 6 (βk − αk)(1− bkv),
0 6 πkvL −

Tkv
L

τ < 1,

∀k,∀v,∀t, (17)

where πkvL is an auxiliary integer variable for expanding the
ceil operation over Tkv

L

τ . The first and the second inequalities
respectively enforce δkvt = 0, when t < ξk? and t > (ξk?+dk+
πkvL ), which is the ending time of the link transmission. The
third one enforces δkvt = 1 when t is in the range [ξk? , ξ

k
? +

dk +
⌈
Tkv
L

τ

⌉
) and bkv = 1.

B. Processing Latency and Storage Provisioning

Equation (7) is a nonlinear indicator function of the vari-
ables rkv and qkv . To handle this issue, we first introduce
an auxiliary variable bkv to indicate whether request k is
processed on node v. According to the definition of qkv , we
have the following constraint:

qkv 6 bkv 6Mqkv, ∀k,∀v, (18)

where M > 0 is a big value and such constraint implies that
if qkv = 0, the request k is not processed on node v, i.e.
bkv = 0. Based on the above, we can rewrite constraint (8) as:{

ηkqkvλk − (1− bkv) < rkvDv,
rkv 6 bkv,

∀k, ∀v. (19)

Note that the term (1 − bkv) permits to implement condition
qkv > 0 in Eq. (8). The storage capacity constraint (10) can
be rewritten as follows:∑

k∈K
mkbkv 6 Sv, ∀v. (20)

In equation (7), we observe that if bkv = 1, we have:

1

rkvDv − ηkqkvλk
>

1

Dv
>

1

Dmax
,

where Dmax = maxv∈V Dv , otherwise rkvDv−ηkqkvλk = 0
resulting in T kvP → ∞. To handle this case, we first define a
new variable T kvP ′ as follows:

T kvP ′ =
1

rkvDv − ηkqkvλk + (1− bkv)Dmax
. (21)

From this equation, we have bkv = 1 ⇒ T kvP ′ = T kvP >
1

Dmax
and bkv = 0⇒ T kvP ′ = 1

Dmax
, T kvP = 0. More in detail,

this indicates that if a request k is accepted and processed on a
set of nodes Vsub ⊆ V (i.e., bkv = 1, v ∈ Vsub), the processing
latency is determined by maxv∈Vsub

T kvP > 1
Dmax

, therefore,
T kvP ′ satisfies the related constraints and represents the exact
processing latency when request k is accepted. Instead if k
is rejected, then we have zkt = 0, bkv = 0,∀v, t. Based
on constraint (2) specifying that the ending time depends
on the maximum latency and considering that a rational and

meaningful request should satisfy dk +
⌈

1
Dmaxτ

⌉
< βk − αk,

we have ξkvo = dk +
⌈
Tkv
P ′
τ

⌉
< βk. Therefore, T kvP ′ is a valid

representation for the processing latency and the reformulation
has no influence on the solution of the optimization problem.

Since rkvt = ρkvtrkv is the product of binary and continu-
ous variables, we linearize it as:{

0 6 rkvt 6 ρkvt,
0 6 rkv − rkvt 6 1− ρkvt, ∀k, ∀v,∀t. (22)

Recall that ρkvt is a binary variable which is equal to 1
if ξk? +

⌈
Tkv
L

τ

⌉
6 t < ξkvo , and 0, otherwise. We can see in

ρkvt that both upper and lower bounds of t are variables. We
reformulate ρkvt by the following constraints: The derivation
is very similar to the one for δkvt (see inequality (17)) due to
the similar definitions of the variables.

ξk? + πkvL − t 6 (βk − dk)(1− ρkvt),
t− ξkvo < (Tm − dk + 1)(1− ρkvt),
0 6

∑
t′∈T ρ

kvt′ − (dk + πkvP ′) 6 (βk − αk)(1− bkv),
0 6 πkvP ′ −

Tkv
P ′
τ < 1,

∀k, ∀v,∀t, (23)

where πkvP ′ is an auxiliary integer variable for expanding
the ceil operation over Tkv

P ′
τ . Based on above, the deadline

constraint (2) can be rewritten as:

ξk? + dk + πkvL + πkvP ′ 6 βk, ∀k, ∀v. (24)

C. Routing Path

Based on the definitions introduced in the previous subsec-
tion, the traffic flow fke can be transformed as:

fke =
∑

v∈V
γkve qkv,∀k,∀e. (25)

Now we need to simplify the traffic flow conservation
constraint (see Eq. (3)). To this aim, and to simplify notation,
we first introduce in the network topology a “dummy” entry
node 0 which connects to all source nodes sk, k ∈ K. All
requests are coming through this dummy node and going to
each source node with volume λk, i.e. fke = 1,∀k,∀e ∈ F ,
where F = {(0, sk) | k ∈ K} is the dummy link set. Then,
we extend the definition of Φ−v to Φ−v = {(v′, v) ∈ E ∪ F}.
Equation (3) is hence transformed as:∑

e∈Φ−v

fke −
∑
e∈Φ+

v

fke = qkv, ∀k,∀v. (26)

Correspondingly, we add the following constraints to the set
F of dummy links:

γkve =

{
bkv, if e = (0, sk)
0, otherwise, ∀k,∀v,∀e ∈ F . (27)

The final stage of our procedure is the definition of the
constraints that guarantee all desirable properties that a routing
path must respect: the fact that a single path is used (a request
piece is no more splittable), the flow conservation constraints
that provide continuity to the chosen path, and finally the



absence of cycles in the routing path Rkv . We would like
to highlight that the request k can be only split at source node
sk, and each portion of such traffic is destined to an edge node
v, and this is the reason why we have multiple routing paths
Rkv, v ∈ {1, 2, · · · }.

To this aim, we introduce the following conditions:
• For an arbitrary node v′, the number of incoming links

used by a path Rkv is one, and thus variables γkve should
satisfy the following condition:∑

e∈Φ−
v′
γkve 6 1, ∀k, ∀v,∀v′. (28)

• The flow conservation constraint (see Eq. (26)) imple-
ments the continuity of a traffic flow.

• Every routing path should have an end or a destination
to avoid loops. This can be ensured by the following
equation:

γkv(v,v′) = 0, ∀k, ∀(v, v′) ∈ E . (29)

Satisfying them along with the constraints illustrated before
can guarantee that such properties of the routing path are
respected. The proof is as follows:

Proof. a) Substitute Eq. (25) into (26) and make the following
transformation:∑

v′∈V
qkv
′
(
∑
e∈Φ−v

γkv
′

e −
∑
e∈Φ+

v

γkv
′

e ) = qkv, ∀k, ∀v. (30)

b) Based on constraints (12) and (27), we have:

if qkv
′

= 0, then
∑
e∈Φ−v

γkv
′

e −
∑
e∈Φ+

v

γkv
′

e = 0.

c) From a) and b), we have:

∑
e∈Φ−v

γkve −
∑
e∈Φ+

v

γkve = 1, ∀k,∀v | qkv > 0,

∑
e∈Φ−v

γkv
′

e −
∑
e∈Φ+

v

γkv
′

e = 0, ∀k,∀v,∀v′ 6= v.

d) Based on c), constraint (27), conditions (28) and (29) can
be written as:

∑
e∈Φ−

sk

γkve = 1, ∀k, ∀v | qkv > 0,

∑
e∈Φ−v

γkve = 1, ∀k, ∀v | qkv > 0,

∑
e∈Φ−v

γkv
′

e =
∑
e∈Φ+

v

γkv
′

e 6 1, ∀k, ∀v,∀v′ 6= v.

(31)

(32)

(33)

Their practical meaning is explained as follows:
• (31) ensures dummy link (0, sk) to be the zeroth link in

any routing path Rkv if qkv > 0,
• (32) ensures node v to be the end node of the last link

in any routing path Rkv if qkv > 0,
• (33) ensures that if v ∈ E\{v′} is an intermediate node

in a routing path Rkv′ , v should have only one incoming

link and one outgoing link. It also indicates the continuity
of a request flow.

e) Given a non-empty routing path Rkv′ (qkv
′
> 0), check

its validity by using the above conditions:
• Let v = sk in (33), then based on (31),

∑
e∈Φ+

v
γkv

′

e = 1.
Next, we assume e1 = (sk, v1) is the first link of the
routing path Rkv′ , then γkv

′

e1 = 1;
• If v1 = v′, then the path is found, otherwise, we continue

with the following steps:
• Let v = v1 in (33), due to γkv

′

e1 = 1,
∑
e∈Φ+

v1
γkv

′

e = 1.

Next, we assume e2 = (v1, v2) is the second link ofRkv′ ,
then γkv

′

e2 = 1;
• We continue to check the path following the way as above

the two steps until the final target vn = v′ is reached,
along the whole path (sk → v′) = (e1, e2, · · · , en).

Thus, if all the conditions are satisfied, Rkv′ must be a valid
routing path having the three properties.

Based on the above reformulation of routing, the flow
conservation constraints can be further improved as follows:

∑
e∈Φ−v

γkve = bkv, ∀k, ∀v,

∑
e∈Φ−

v′

γkve =
∑
e∈Φ+

v′

γkve , ∀k, ∀v,∀v′ 6= v.

(34)

(35)

D. Final Reformulated Problem P1

After using the above reformulated constraints, we replace
the corresponding original ones in P0; the new reformulated
problem is referred to as P1, and is equivalent to P0.
Since constraints (14) and (21) are quadratic while the others
are linear, P1 is a mixed-integer quadratically constrained
programming (MIQCP) problem, for which commercial and
freely available solvers can be used, as we discussed in the
numerical evaluation section.

II. NUMERICAL RESULTS (FULL)

This section mainly contains the network topologies (see
Figure 1) used in our experiments and the corresponding re-
sults showing the effects of the considered network parameters
(see Figure 2).
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Fig. 1: Network topologies. Ingress nodes for each graph are
colored in orange. In scenario (a), each ingress node has one
request, and in scenario (b), each ingress node has 6 different
requests.
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(b) 30N50E30R (λk, µk)

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Scale of request rate

0.75

0.80

0.85

0.90

0.95

1.00

Se
rv

in
g 

ra
te

Greedy
SFS

(c) 30N50E30R λk

0.50 0.75 1.00 1.25 1.50 1.75 2.00
Scale of request rate and revenue

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Se
rv

in
g 

ra
te

Greedy
SFS

(d) 30N50E30R (λk, µk)

0.2 0.4 0.6 0.8 1.0 1.2
Scale of bandwidth

300

400

500

600

700

800

900

1000

Pr
of

it

Greedy
SFS

(e) 30N50E30R Be

0.6 0.8 1.0 1.2 1.4
Scale of computation capacity

650

700

750

800

850

900

950

1000

Pr
of

it

Greedy
SFS

(f) 30N50E30R Dv
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Fig. 2: Scenario 30N50E30R: profit and serving rate against scaling parameters λk, (λk, µk), Be and Dv .


